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In this work we present two new methods that use easily « We group our data into N bins based on the PLMAF and compute the midpoint of

calculated measures to directly estimate the complexity of each bin, pp,.

infection (COI) from within sample allele frequencies. We « For each bin, we determine the average v;, denoting the vector of averages as
incorporate these methods into a software package: coiaf. t,mand the mean WSMAF for all heterozygous loci, ¢ n.

 Finally, we solve an optimization problem for each method:
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« Computational models are increasingly used to help guide malaria control policy and L raN . . \ig \1/4
are a key component in understanding the spread of malaria [1]. * Frequency Method: m,gn(Zm=1 |(Epm — FrBa)1?) n
« The complexity of infection (COl) represents the number of genetically distinct - Wenotethatg = 1,1, £ P(V; = 1), and f; £ E[W;|V; = 1] Mean CO'LO 16 20 25
malaria genomes or strains that can be identified in a particular individual and is a B
strong correlate of the level of transmission [2]. ReS U |tS
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« For a biallelic SNP, we define the major allele as the allele that is most prevalent in 5 . 15 20 5 £ 15 20 101 e
a population and the minor allele as the allele that is least prevalent (less than 50%) 21 002
in a population. : RITor 2 4 6

« We define the population-level minor allele frequency (PLMAF) as an [-dimensional COl

vector p composed of the frequencies of the minor allele at each locus across a
population, namely p = (p4, ..., p;), Where p; € [0, 0.5].

Ol Method Fig 4. COI Across the Globe. In A we plot the mean COI of all samples in each

B Variant Method study location within the 24 regions. The color and size of each point represents the

B Frequency Method magnitude of the COI. In B, we draw a density plot for each region, sorting the regions
by their median prevalence, shown on the right side of the plot. Furthermore, we shade
the density plots by the continent data was obtained from.

Conclusions

« We define the within-sample minor allele frequency (WSMAF) as the frequency of

the PLMAF at each locus for a single individual infection. - .ihii'

- We denote the COl as k. N +_MM““H il
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Fig 2. Estimating the COI on simulated data. The performance of the Variant

. Given samole allele A P— Method (A) and Frequency Method (B) is shown for 100 simulations of a COI of 1-20 « We derived two different methods to estimate the COI, one which identifies the
¢ mp D. Ry with 1,000 loci, a read depth of 100, no error added to the simulations, and no probability that a locus is heterozygous, and the other which identifies the expected
rgqtien0|es : {(hpi» w;), - il ..-r-.s: g Fixasta sequencing error assumed. Point size indicates density, with the red line representing value of the within-sample allele frequency given a site is heterozygous, which can
i ={1,..,1} Where p; 1S the " RUNOME Z IR L the line y = . The mean absolute error for each method is shown in (C). The black be used to rapidly estimate the COI of a sample.
PLMAF at locus i and w; is gz "2 gt by bars indicate the 95% confidence interval.
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a sample. ) . sl or  Bouas » On simulated data, our methods performed well for low COls even when the
« We define I; a R.V. which Variants | Heterozygous Data . coverage and number of loci was low (1,000 loci), allowing for accurate assessments

method, especially for CQOls less than 5.

takes the value of 1 ifa siteis | % .:..-.'..4':".'-3:.’.‘ > - f using targeted and whole genome sequencing data.
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Fig 1. Flowchart of methods. In (A), the relationship between the WSMAF and : = 2. RE4.»\L Mcé()lL Pr";dicti(m' : : y - Mcdim'l"'RMCL =~ doi:10.1073/pnas.1505691112
the PLMAF is shown for an example simulation with a COI of 4. In (B), data have 3. Chang H-H, Worby CJ, Yeka A, Nankabirwa J, Kamya MR, Staedke SG, et al. THE REAL McCOIL: A
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data, in (D) the theoretical relationships for a COI of 1-5 are shown as dashed red lines. Fig 3. Comparison Between THE REAL McCOIL and Discrete coiaf. The P P % ’ J P
.Likcwise in (E), theoretical relationships for a COI of 2-6 are shown. Tl}e solid red lines discrete estimation of COI using the a) Variant Method and b) Frequency Method is
in (D) and (E) represent the average of the processed data over each bin of data. The compared against the THE REAL McCOIL. In ¢) the distribution of differences

red dashed lines represent our two methods for various values of the COI.
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